Evaluation of the incidence rates of subclinical hypothyroidism and hypoparathyroidism in breast cancer patients undergoing radiotherapy

Niloofar Rahimi, Iraj Feizi, Farzaneh Mashayekhi, Oveis Salehi, Faezeh Norouzi, Manochehr Iranparvar-Alamdari, Amir Abbas Kani, Hamed Zandian, Amirreza Khalaji

Abstract


Background: The current advances in radiotherapy (RT) have improved the outcome of breast cancer (BC) patients. Despite its therapeutic benefits, the iatrogenic toxicities of RT and its impact on BC survivors are still debated, and further evaluations should be considered. This study aims to assess the rate of subclinical hypothyroidism and hypoparathyroidism among BC patients who were exposed to therapeutic radiation.

Methods: Seventy females undergoing RT for BC were enrolled in this cross-sectional study. Laboratory assessment of thyroid stimulating hormone (TSH), free thyroxine (fT4), and free triiodothyronine (fT3) levels was obtained to evaluate thyroid function. The parathyroid function was evaluated by measuring serum levels of Calcium (Ca), Phosphorus (P), and parathyroid hormone (PTH) at baseline, six and 12 months after RT.

Results: The mean age of patients was 54.3±6.4 years. We found no cases of hypothyroidism before radiotherapy. However, nine patients developed hypothyroidism in the six months after radiotherapy (one clinical and eight subclinical, 13% in total), and six patients were identified with hypothyroidism in the 12 months after radiotherapy (one clinical and five subclinical, 8.7% in total). Significant relationships were observed in the hypothyroidism rate at both six months (p = 0.003) and 12 months (p = 0.028) after RT compared with the baseline. There was no case of hypoparathyroidism before and after RT. 

Conclusion: In summary, we found that thyroid and parathyroid dysfunction after RT are relatively common findings among women with BC. It is a treatable source of morbidity in patients undergoing RT. Therefore, routine thyroid function monitoring should be recommended to improve the quality of life in BC survivors.

Keywords: radiotherapy, subclinical hypothyroidism, breast cancer, hypoparathyroidism

DOI: 10.5737/23688076344477


Full Text:

PDF

References


Aboelnaga, M. M., & Aboelnaga, E. M. (2015). Early parathyroid hormone laboratory abnormalities related to therapeutic radiation of neck: An Egyptian experience. Medical Oncology, 32(5), 1–5.

Alterio, D., Jereczek-Fossa, B. A., Franchi, B., D’Onofrio, A., Piazzi, V., Rondi, E., Ciocca, M., Gibelli, B., Grosso, E., & Tradati, N. (2007). Thyroid disorders in patients treated with radiotherapy for head-and-neck cancer: A retrospective analysis of seventy-three patients. International Journal of Radiation Oncology* Biology* Physics, 67(1), 144–150.

Bassiri, R.M., & Utiger, R.D. (1974). Thyrotropin-releasing hormone in the hypothalamus of the rat. Endocrinology, 94(1), 188–197.

Beck-Peccoz, P., Amr, S., Menezes-Ferreira, M. M., Faglia, G., & Weintraub, B. D. (1985). Decreased receptor binding of biologically inactive thyrotropin in central hypothyroidism: Effect of treatment with thyrotropin-releasing hormone. New England Journal of Medicine, 312(17), 1085–1090.

Bruning, P., Bonfrer, J., Jong-Bakker, D., Nooyen, W., & Burgers, M. (1985). Primary hypothyroidism in breast cancer patients with irradiated supraclavicular lymph nodes. British Journal of Cancer, 51(5), 659–663.

Dahbi, Z., Sbai, A., & Mezouar, L. (2018). Thyroid function after hypofractionated adjuvant radiotherapy for localized breast cancer. Cancer Radiotherapie: Journal de la Societe Francaise de Radiotherapie Oncologique, 23(1), 34–37.

Darvish, L., Ghorbani, M., Teshnizi, S. H., Roozbeh, N., Seif, F., Bayatiani, M. R., Knaup, C., & Amraee, A. (2018). Evaluation of thyroid gland as an organ at risk after breast cancer radiotherapy: A systematic review and meta-analysis. Clinical and Translational Oncology, 20(11), 1430–1438.

Emami, B., Lyman, J., Brown, A., Cola, L., Goitein, M., Munzenrider, J., Shank, B., Solin, L., & Wesson, M. (1991). Tolerance of normal tissue to therapeutic irradiation. International Journal of Radiation Oncology* Biology* Physics, 21(1), 109–122.

Fierabracci, P., Pinchera, A., Miccoli, P., Conte, P., Vignali, E., Zaccagnini, M., Marcocci, C., & Giani, C. (2001). Increased prevalence of primary hyperparathyroidism in treated breast cancer. Journal of Endocrinological Investigation, 24(5), 315–320.

Franco, P., De Felice, F., Jagsi, R., Nader Marta, G., Kaidar-Person, O., Gabrys, D., Kim, K., Ramiah, D., Meattini, I., & Poortmans, P. (2023). Breast cancer radiation therapy: A bibliometric analysis of the scientific literature. Clinical and Translational Radiation Oncology, 39, 100556. https://doi.org/10.1016/j.ctro.2022.11.015

Giv, M. D., Toosi, M. B., Aghamiri, S., Akbari, F., & Taeb, S. (2016). Calculation of thyroid dose with planner system and evaluation of thyroid function after radiotherapy for patients with breast cancer. Journal of Biomedical Physics & Engineering, 6(4), 220.

Haciislamoglu, E., Canyilmaz, E., Gedik, S., Aynaci, O., Serdar, L., & Yoney, A. (2019). Effect of dose constraint on the thyroid gland during locoregional intensity-modulated radiotherapy in breast cancer patients. Journal of Applied Clinical Medical Physics, 20(7), 135–141.

Hahn, W., Elenbaas, B., Stewart, S., Watnick, R., Yang, J., Mani, S., & Weinberg, R. (2001). Rules governing the creation of human tumor cells. European Journal of Cancer(37), S369.

Hancock, S. L., McDougall, I. R., & Constine, L. S. (1995). Thyroid abnormalities after therapeutic external radiation. International Journal of Radiation Oncology* Biology* Physics, 31(5), 1165–1170.

Hermann, R. M., Henkel, K., Christiansen, H., Vorwerk, H., Hille, A., Hess, C. F., & Schmidberger, H. (2005). Testicular dose and hormonal changes after radiotherapy of rectal cancer. Radiotherapy and Oncology, 75(1), 83–88.

Holten, I., & Petersen, L. (1988). Early changes in parathyroid function after high-dose irradiation of the neck. Cancer, 62(8), 1476–1478.

Huang, R., Xiang, J., & Zhou, P. (2019). Vitamin D, gut microbiota, and radiation-related resistance: A love-hate triangle. Journal of Experimental & Clinical Cancer Research, 38(1), 1–10.

Jereczek-Fossa, B. A., Alterio, D., Jassem, J., Gibelli, B., Tradati, N., & Orecchia, R. (2004). Radiotherapy-induced thyroid disorders. Cancer Treatment Reviews, 30(4), 369–384.

Johansen, S., Reinertsen, K., Knutstad, K., Olsen, D. R., & Fosså, S. (2011). Dose distribution in the thyroid gland following radiation therapy of breast cancer–A retrospective study. Radiation Oncology, 6(1), 1–7.

Kanyilmaz, G., Aktan, M., Koc, M., Demir, H., & Demir, L. S. (2017). Radiation-induced hypothyroidism in patients with breast cancer: A retrospective analysis of 243 cases. Medical Dosimetry, 42(3), 190–196.

Kuten, A., Lubochitski, R., Fishman, G., Dale, J., Stein, M.E. (1996). Postradiotherapy hypothyroidism: Radiation dose response and chemotherapeutic radiosensitization at less than 40 Gy. Journal of Surgical Oncology, 61(4), 281–283.

Laway, B., Shafi, K. M., Majid, S., Lone, M. M., Afroz, F., Khan, S., & Roohi, R. (2012). Incidence of primary hypothyroidism in patients exposed to therapeutic external beam radiation, where radiation portals include a part or whole of the thyroid gland. Indian Journal of Endocrinology and Metabolism, 16(Suppl 2), S329.

Loibl, S., Poortmans, P., Morrow, M., Denkert, C., & Curigliano, G. (2021). Breast cancer. Lancet, 397(10286), 1750–1769. https://doi.org/10.1016/s0140-6736(20)32381-3

?ukasiewicz, S., Czeczelewski, M., Forma, A., Baj, J., Sitarz, R., & Stanis?awek, A. (2021). Breast cancer-Epidemiology, risk factors, classification, prognostic markers, and current treatment strategies–An updated review. Cancers (Basel), 13(17). https://doi.org/10.3390/cancers13174287

Ozawa, H., Saitou, H., Mizutari, K., Takata, Y., & Ogawa, K. (2007). Hypothyroidism after radiotherapy for patients with head and neck cancer. American Journal of Otolaryngology, 28(1), 46–49.

Park, J., Kim, C., Ki, Y., Kim, W., Nam, J., Kim, D., Park, D., Jeon, H., Kim, D. W., & Joo, J. H. (2022). Incidence of hypothyroidism after treatment for breast cancer: A Korean population-based study. PLOS ONE, 17(6), e0269893.

Pillai, U. S., Kayal, S., Cyriac, S., Nisha, Y., Dharanipragada, K., Kamalanathan, S. K., Halanaik, D., Kumar, N., Madasamy, P., & Muniswamy, D. K. (2019). Late effects of breast cancer treatment and outcome after corrective interventions. Asian Pacific Journal of Cancer Prevention: APJCP, 20(9), 2673.

Reinertsen, K. V., Cvancarova, M., Wist, E., Bjøro, T., Dahl, A. A., Danielsen, T., & Fosså, S. D. (2009). Thyroid function in women after multimodal treatment for breast cancer stage II/III: Comparison with controls from a population sample. International Journal of Radiation Oncology* Biology* Physics, 75(3), 764–770.

Rosen, I. B., Strawbridge, H. G., & Bain, J. (1975). A case of hyperparathyroidism associated with radiation to the head and neck area. Cancer, 36(3), 1111–1114.

Smith, G. L., Smith, B. D., Giordano, S. H., Shih, Y. C. T., Woodward, W. A., Strom, E. A., Perkins, G. H., Tereffe, W., Yu, T. K., & Buchholz, T. A. (2008). Risk of hypothyroidism in older breast cancer patients treated with radiation. Cancer: Interdisciplinary International Journal of the American Cancer Society, 112(6), 1371–1379.

Stephen, A. E., Chen, K. T., Milas, M., & Siperstein, A. E. (2004). The coming of age of radiation-induced hyperparathyroidism: Evolving patterns of thyroid and parathyroid disease after head and neck irradiation. Surgery, 136(6), 1143–1153.

Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 71(3), 209–249. https://doi.org/10.3322/caac.21660

Tamura, K., Shimaoka, K., & Friedman, M. (1981). Thyroid abnormalities associated with treatment of malignant lymphoma. Cancer, 47(11), 2704–2711.

Taylor, C., Correa, C., Duane, F. K., Aznar, M. C., Anderson, S. J., Bergh, J., Dodwell, D., Ewertz, M., Gray, R., & Jagsi, R. (2017). Estimating the risks of breast cancer radiotherapy: Evidence from modern radiation doses to the lungs and heart and from previous randomized trials. Journal of Clinical Oncology, 35(15), 1641.

Tunio, M. A., Al Asiri, M., Bayoumi, Y., Stanciu, L. G., Al Johani, N., & Al Saeed, E. F. (2015). Is thyroid gland an organ at risk in breast cancer patients treated with locoregional radiotherapy? Results of a pilot study. Journal of Cancer Research and Therapeutics, 11(4), 684.

Von Elm, E., Altman, D. G., Egger, M., Pocock, S. J., Gøtzsche, P. C., Vandenbroucke, J. P., & Initiative, S. (2007). The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. Annals of Internal Medicine, 147(8), 573–577.

Woll, M. L., Mazeh, H., Anderson, B. M., Chen, H., & Sippel, R. S. (2012). Breast radiation correlates with side of parathyroid adenoma. World Journal of Surgery, 36(3), 607–611.

Wolny-Rokicka, E., Tukiendorf, A., Wydma?ski, J., Roszkowska, D., Staniul, B. S., & Zembro?-?acny, A. (2016). Thyroid function after postoperative radiation therapy in patients with breast cancer. Asian Pacific Journal of Cancer Prevention, 17(10), 4577–4581. https://doi.org/10.22034/apjcp.2016.17.10.4577

Yao, L., Li, J., Li, M., Lin, C., Hui, X., Tamilselvan, D., Kandi, M., Sreekanta, A., Makhdami, N., & Ali, D. S. (2022). Parathyroid hormone therapy for managing chronic hypoparathyroidism: A systematic review and meta-analysis. Journal of Bone and Mineral Research, 37(12), 2654–2662.


Refbacks

  • There are currently no refbacks.